Linearization of fourth-order ordinary differential equations by point transformations
نویسندگان
چکیده
We present here the solution of the problem on linearization of fourthorder equations by means of point transformations. We show that all fourth-order equations that are linearizable by point transformations are contained in the class of equations which is linear in the third-order derivative. We provide the linearization test and describe the procedure for obtaining the linearizing transformations as well as the linearized equation.
منابع مشابه
The Exact Linearization of Some Classes of Ordinary Differential Equations for Order n > 2
The method of exact linearization nonlinear ordinary differential equations (ODE) of order n suggested by one of the authors is demonstrated in [1, 2]. This method is based on the factorization of nonlinear ODE through the first order nonlinear differential the operators, and is also based on using both point and nonpoint, local and nonlocal transformations. Exact linearization of autonomous th...
متن کاملλ−Symmetries and linearization of ordinary differential equations through nonlocal transformations ?
A recent study (Muriel and Romero (2010a)) on the linearization of ordinary differential equations through generalized Sundman transformations suggests considering the problem of linearization through nonlocal transformations from the point of view of the λ−symmetries admitted by the equation and their associated first integrals. The systematic methods to calculate λ−symmetries and associated f...
متن کاملOn the Linearization of Second-Order Differential and Difference Equations
This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336] on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equati...
متن کاملN ov 2 00 7 Use of Complex Lie Symmetries for Linearization of Systems of Differential Equations - I : Ordinary Differential Equations
The Lie linearizability criteria are extended to complex functions for complex ordinary differential equations. The linearizability of complex ordinary differential equations is used to study the linearizability of corresponding systems of two real ordinary differential equations. The transformations that map a system of two nonlinear ordinary differential equations into systems of linear ordin...
متن کاملLinearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations
The linearization problem of a second-order ordinary differential equation by the generalized Sundman transformation was considered earlier by Duarte, Moreira and Santos using the Laguerre form. The results obtained in the present paper demonstrate that their solution of the linearization problem for a second-order ordinary differential equation via the generalized Sundman transformation is not...
متن کامل